Does Using a Smaller Pipe Increase Water Pressure?

There is a very persistent misconception in the lawn sprinkler industry that using progressively smaller pipe sizes in a sprinkler system will help keep the water pressure high.   The argument is that as the water moves through the pipes past the sprinklers, the pipe must get smaller in order to squeeze the water so that the pressure stays high enough to operate the sprinklers.  Unfortunately, it’s not true.  It would be nice if it was, because we could eliminate pumps.  Plus think of all the money you would save on pipe.  The smaller the pipe you used, the better your system would work!  So why not use 1/4″ or even 1/8″ tube for the pipes?  That would really pump up the pressure!  Sounds a little silly when you look at it that way, right?  OK, enough with the sarcasm.  I’ll explain this whole mess.

Squeezing the water into a smaller pipe will not increase the water pressure!

Part of the reason this misconception persists is that it does seem logical.  The example most often given to support this idea is what happens when holding your thumb over the end of a hose.  As you press your thumb over the opening, making it smaller, you can feel the water pressure against your thumb increase.  Pushing your thumb even tighter against the end of the hose, makes the opening even smaller, and you feel the pressure increase even more.  That would seem to prove that decreasing the opening size is increasing the water pressure.  So logically, using a smaller pipe would also increase the water pressure.

Unfortunately there is a lot more happening with this “thumb over the hose end” example than you realize.   As water moves through a hose or pipe there is a lot of resistance caused by the hose or pipe surfaces.   The water moves through the hose at the maximum speed it can while still overcoming this friction.  When the water reaches the end of the hose it has close to zero pressure left as it exits.  So if you have, say, 50 PSI of water pressure at the hose faucet, the  water will move as fast as it can through the hose, such that it will use up almost all that 50 PSI of pressure by the time it reaches the end of the hose.  If there were 60 PSI of pressure, the water would just move a little faster through the hose so that it used up almost all 60 PSI by the time it exits.  So basically regardless of the pressure, almost all the water pressure is used up by the time the water flows through the hose.  The nature of water is that it will reach the most efficient balance between flow rate and pressure loss that it can.  (Note, I am oversimplifying this to make it digestible for the average person.  If you have a degree in hydraulics you already know all the other related stuff about open vs. closed channels and nozzling effects.)

When you put your thumb over the end of the hose you change the flow dynamics in the hose.  Your thumb restricts the flow of water through the hose.   With your thumb over the end, the water is flowing much slower through the hose, and as a result, there is a lot less pressure loss due to friction.  So with less pressure being lost in the hose, the pressure at the end of the hose where your thumb is increases.  The tighter you squeeze your thumb, the more the flow is reduced, and the greater the pressure you feel will be.  But you haven’t created any NEW pressure.  You have simply traded reduced flow for increased pressure.    You can easily test this yourself.  Take a bucket and time how long it takes to fill it using an open end hose.  Now time how long it takes to fill the same bucket with your thumb firmly pressed over the hose end.  It will take longer to fill, because your thumb has reduced the flow!  The same thing would happen in your sprinkler system if you used smaller pipe to increase the pressure.  The smaller pipe would restrict the flow of water.   The reduced flow would reduce the pressure loss in the pipes, resulting in more pressure.  But of course the sprinklers would not work because they won’t be getting the flow they require!    Sprinklers require both flow and pressure.

OK, that’s the layman’s explanation.  But there are also some much more complex scientific theory that I have been asked about in relation to this topic.   So here’s some very scientific explanations.

Bernoulli’s Principle, Venturi Effect, & Flying Pigs

Grab your thinking caps for this.  As you well know, Bernoulli’s Principle essentially says (paraphrased) that as the speed of a fluid increases, the pressure of that fluid decreases. If it didn’t, pigs wouldn’t fly.*   Obviously as you force a given amount of water through a smaller size pipe, the velocity of the water must increase for it to get through the smaller pipe.  According to Bernoulli’s Principle that will decrease the water pressure!  This is called the Venturi effect.  By suddenly forcing the water through a narrow passage you can actually create enough of a pressure decrease that it creates suction.  This is how many fertilizer injectors work.  It also is another reason why using a smaller pipe would not increase the pressure– it would actually decrease it!

Another less common argument is the pipe size must be decreased because the flow is decreasing at each sprinkler head location along the pipe route. Thus if the pipe were to remain the same size, the velocity in the pipe would decrease, resulting in an increase in pressure (according to Bernoulli’s Principle again.)  This is actually a good, scientifically based point, and accurate too!  So the argument is that the pipe sizes must become smaller in order to keep the velocity constant and avoid an increase in water pressure. (Are you bored yet?) Unfortunately when used as an argument for using smaller pipe, this one falls flat when you do the actual math.  At a flow of 7 feet per second, which is the maximum recommended safe flow for PVC pipe, the maximum possible pressure increase  due to velocity change would be a whopping 1/3 PSI.  So in theory, using a smaller pipe would eliminate that 1/3 PSI pressure gain.  But using a smaller pipe probably would also increase the pressure loss due to friction, as previously mentioned.   The drop in pressure due to friction loss likely will offset most if not all of any gain that might have occurred due to decrease in velocity.  Even if it didn’t the maximum possible pressure gain of 1/3 PSI is simply not significant and would not be noticed.  So I stand by my statement that the only reason to decrease pipe size is to save money.

*Oh, by the way, Bernoulli’s Principle is why airplane wings create lift, which helps airplanes fly.  Therefore, it is also the reason that people, and yes, even pigs, can fly!